If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9-9x^2=-151
We move all terms to the left:
9-9x^2-(-151)=0
We add all the numbers together, and all the variables
-9x^2+160=0
a = -9; b = 0; c = +160;
Δ = b2-4ac
Δ = 02-4·(-9)·160
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*-9}=\frac{0-24\sqrt{10}}{-18} =-\frac{24\sqrt{10}}{-18} =-\frac{4\sqrt{10}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*-9}=\frac{0+24\sqrt{10}}{-18} =\frac{24\sqrt{10}}{-18} =\frac{4\sqrt{10}}{-3} $
| -2+3c=-11 | | 8x+6-9x=2-x15 | | 18=c/2+15 | | n/4+9=13 | | 9-4x+2x-4=5-2x | | (3x+18)93=90 | | X*2=6x-9 | | 4(x=-5)=5x+1 | | 0=(t^2)-6t-11 | | Y-2.4x=5 | | z/3+13=15 | | 3(2a~1)=04(3a~2)= | | 17=1y+8 | | (x-8)*(x^2-49)/x-8=15 | | 4+4=3x-1 | | 3y+3=5y-29 | | 7x-(3x+12)=8 | | x−6=−3x+22 | | X+2=3x+52 | | x−6=-3x+22 | | 3/4x+1/8x=42 | | 7n=84;n | | -6(v+4)=-8v-18 | | 32=4x-4.5 | | 49=5v+14 | | 3(3y−4)=33 | | 4v-10=7(v+2) | | 20×n=30 | | 6w-12=228 | | (4)/(9)w=-8 | | 6t-9/3=t | | 2(7−8x)=32−10x |